Shadow Timeline Creation

<u>Step 1 – Attach Local or Remote System Drive</u> # ewfmount system-name.E01 /mnt/ewf

Step 2 - Mount VSS Volume
 # cd /mnt/ewf
 # vshadowmount ewf1 /mnt/vss

Step 3 - Run fls across ewfl mounted image
 # cd /mnt/ewf
 # fls -r -m C: ewfl >> /cases/vss bodyfile

Step 4 - Run fls Across All Snapshot Images
 # cd /mnt/vss
 # for i in vss*; do fls -r -m C: \$i
 >> /cases/vss-bodyfile; done

Step 5 - De-Duplicate Bodyfile using sort and uniq
 # sort /cases/vss-bodyfile | uniq >
 /cases/vss-dedupe-bodyfile

<u>Step 6 - Run mactime Against De-Duplicated Bodyfile</u> **# mactime -d -b /cases/vss-dedupe bodyfile -z EST5EDT MM-DD-YYYY..MM-DD-YYYY > /cases/vss-timeline.csv**

Memory Analysis

vol.py command -f
/path/to/windows_xp_memory.img -profile=WinXPSP3x86

[Supported commands]

connscan	Scan for connection objects
files	list of open files process
imagecopy	Convert hibernation file
procdump	Dump process
pslist	list of running processes
sockscan	Scan for socket objects

Sleuthkit Tools

File System Layer Tools (Partition Information)

Data Layer Tools (Block or Cluster)

blkls -Lists contents of deleted disk blocks
blkls imagefile.dd > imagefile.blkls

blkcalc -Maps between dd images and blkls results
 # blkcalc imagefile.dd -u blkls_num

blkstat -Display allocation status of block
 # blkstat imagefile.dd cluster_number

MetaData Layer Tools (Inode, MFT, or Directry Entry)

ils -Displays inode details
 # ils imagefile.dd

- icat -Displays contents of blocks allocated to an inode
 # icat imagefile.dd inode_num
- ifind -Determine which inode contains a specific block
 # ifind imagefile.dd -d block_num

Filename Layer Tools

- fls -Displays deleted file entries in a directory inode
 # fls -rpd imagefile.dd
- ffind -Find the filename that using the inode
 # ffind imagefile.dd inode_num

SIFT WORKSTATION Cheat Sheet v3.0 SANS DFIR

http://computer-forensics.sans.org http://blogs.sans.org/computer-forensics

Purpose

DFIR Forensic Analysts are on the front lines of computer investigations. This guide aims to support Forensic Analysts in their quest to uncover the truth.

How To Use This Sheet

When performing an investigation it is helpful to be reminded of the powerful options available to the investigator. This document is aimed to be a reference to the tools that could be used. Each of these commands runs locally on a system.

This sheet is split into these sections:

- Mounting Images
- Shadow Timeline Creation
- Mounting Volume Shadow Copies
- Memory Analysis
- Recovering Data
- Creating Supert Timelines
- String Searches
- The Sleuthkit
- Stream Extraction

TIME TO GO HUNTING

Mounting DD Images

mount -t *fstype* [options] image mountpoint

image can be a disk partition or dd image file

[Useful Options] mount as read only ro loop mount on a loop device do not execute files noexec mount as read only ro mount on a loop device 1000 offset=<BYTES> logical drive mount show ntfs metafiles show sys files streams_interface=windows use ADS

Example: Mount an image file at mount location

mount -o loop, ro, show sys files, streams interface=window s imagefile.dd /mnt/windows mount

Mounting E01 Images

ewfmount image.E01 mountpoint

mount -o loop,ro,show sys files,streams interface=window s /mnt/ewf/ewf1 /mnt/windows mount

Mounting Volume Shadow Copies

Stage 1 – Attach local or remote system drive # ewfmount system-name.E01 /mnt/ewf

Stage 2 – Mount raw image VSS # vshadowmount ewf1 /mnt/vss/

Stage 3 – Mount all logical filesystem of snapshot

cd /mnt/vss # for i in vss*; do mount -o ro, loop, show sys files, streams interface= windows \$i /mnt/shadow mount/\$i; done

Creating Super Timelines

log2timeline -r -p -z <system-timezone> -f <type-input> /mnt/windows mount -w timeline.csv

file	dir	artifact target
-f	<type-input></type-input>	input format
-0	<type-output></type-output>	output format: default csv file
-w	<file></file>	append to log file
-z	<system timezone=""></system>	
-Z	<i><output timezone=""></output></i>	
-r		recursive mode
-p		preprocessors

mount -o

loop, ro, show sys files, streams interface=windows imagefile.dd /mnt/windows mount

log2timeline -z EST5EDT -p -r -f win7 /mnt/windows mount -w /cases/bodyfile.txt

12t process -b /cases/bodyfile.txt -w whitelist.txt 04-02-2012 > timeline.csv

Stream Extraction

bulk extractor <options> -o output dir image

[Useful Options] -0 01+4--

-o outair	
-f <regex></regex>	regular expression term
-F <rfile></rfile>	file of regex terms
-Wn1:n2	extract words between n1
	and n2 in length
-q nn	quiet mode.
-e scanner	enables a scanner.
-e wordlist	- enable scanner wordlist
-e aes	- enable scanner aes
-e net	- enable scanner net

bulk extractor -F keywords.txt -e net -e aes -e wordlist -o /cases/bulkextractor-memory-output /cases/ memory-raw.001

Registry Parsing - Regripper

rip.pl -r <HIVEFILE> -f <HIVETYPE> [Useful Options] Registry hive file to parse *<HIVEFILE>* -r -f Use <*HIVETYPE*> (e.g. sam, security, software, system, ntuser) -1 List all plugins

rip.pl –r

/mnt/windows mount/Windows/System32/config/SAM -f sam >/cases/windowsforensics/SAM.txt

Recover Deleted Registry Keys

deleted.pl <*HIVEFILE*>

deleted.pl /mnt/windows mount/Windows/System32/config/SAM > /cases/windowsforensics/SAM DELETED.txt

Recovering Data

Create Unallocated Image (deleted data) using blkls

blkls imagefile.dd > unallocated imagefile.blkls

Create Slack Image Using dls (for FAT and NTFS)

blkls -s imagefile.dd > imagefile.slack

foremost Carves out files based on headers and footers

data_file.img = raw data, slack space, memory, unallocated space

foremost -o *outputdir* -c /path/to/foremost.conf data file.img

sigfind - search for a binary value at a given offset (-o)

-o <offset> start search at byte <offset>

sigfind <hexvalue> -o <offset>